
© 2020 JETIR April 2020, Volume 7, Issue 4                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2004051 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 346 
 

Detection and Prevention of SQLI Attacks inside 

the DBMS 

 

SAYALI TELI, PRATIMA MORAJKAR, TEJAS PENDHARKAR, TANMAYEE KULKARNI 

BE Students, Department of Information Technology, Marathwada Mitra Mandal's College of Engineering, Pune, 

 

PREETI JOSHI 

Professor, Department of Information Technology, Marathwada Mitra Mandal's College of Engineering, Pune. 

 

 

Abstract—Database applications are used to store, search, sort, 

calculate, report and share information. Databases can also 

contain code to perform mathematical and statistical calculations 

on the data to support queries submitted by users. The grocery 

store, bank, video rental store and clothing store all use databases 

to keep track of customer, inventory, employee and accounting 

information. SQL injection is a code injection technique, used to 

attack data-driven applications, in which malicious SQL 

statements are inserted into an entry field for execution. The most 

common cause of database vulnerabilities is a lack of due care at 

the moment they are deployed. The effectiveness of such attacks 

stems from semantic mismatch between how SQL queries are 

believed to be executed and the way in which database processes 

them. In this paper, a technique is proposed which provides 

external as well as internal security to the database. SEPTIC(Self 

Protecting mechanism), a mechanism for DBMS attack 

prevention, which can also assist on the identification of the 

vulnerabilities in the applications is combined with Naive Bayes a 

Machine Learning algorithm to achieve accurate results. This 

technique will be implemented using MySQL database. In this 

paper an attempt has been made to develop an online shop that 

allows users to check for different clothing stuff. To enhance the 

security all the user details such as name, password and card 

details will be encrypted using AES algorithm and then stored in 

the database. 
 

 

Keywords—DBMS self-protection, injection attacks, Database 

Security, SQL injection technique, Attack detection, Attack 

prevention, AES Algorithm, Encryption. 

 

I. INTRODUCTION 

SQL Injection is “a code injection technique that exploits a 

security vulnerability occurring in the database layer of an 

application”. In other words it’s SQL code injected in as user 

input inside a query. SQL Injections can manipulate data 

(delete, update, add etc) and corrupt or delete tables of the 

database. It is used to attack data-driven application. Lack of 

input validation is a major vulnerability behind dangerous web 

application attacks. By taking advantage of this, attacker scan 

injects their code into applications to perform malicious tasks. 

In which malicious SQL statements are into an entry field for 

execution. This is a method to attack web applications that 

have a data repository. The attacker would send a specially 

crafted SQL statement that is designed to cause some 

malicious action. Incorrectly validated or non-validated string 

literals are concatenated into a dynamic SOL statement and 

interpreted as code by the SQL engine.  

Web applications have been around for a long time and are 

an important component as they serve to be the interface of 

many business applications. Databases serve to be the most 

commonly used back end by most of the applications. 

However, web applications have vulnerabilities which 

compromises the data stored in databases. SQL injection 

attacks are increasing in large number. Many anti-SQLI 

mechanisms have been developed but less accepted. Some of 

these applications inspect and block SQL queries but without 

having any knowledge of how these queries are processed in 

DBMS. In all the cases developers make assumption about the 

processing at the server side as well as DBMS which 

sometimes goes wrong. For example, developers assume some 

PHP functions always sanitize input and prevent SQLI attack 

which is not always true. Such wrong assumptions are caused 

because of semantic mismatch between how the query is 

expected to run and what actually happens when it is executed. 

This semantic mismatch leads to vulnerabilities as the 

mechanisms may fail to prevent it. 

To avoid such issues SQLI attack can be handled 

inside the DBMS after the server-side code processes the input 

and the queries are validated by DBMS. We will propose two 

categories of attacks the stored attacks will contain the highest 

risk attacks and some other stacks for which new variants 

continue to occur. Stored injection attacks also include SQL 

queries. So we are going to propose the method named 

SDBMS (Security to Database Management System) which 

we will detect the SQLI attacks by comparing the queries with 

the queries stored in query models, and also by comparing the 

queries with validated queries by using similar method to 

improve detection process. So SDBMS works in 3 modes first 

is training mode, second identification and third drop the 

query. In the first mode the application is trained by firing 

large number of queries in an application. This results in set of 

query models. Even though a query model is generated some 

queries can be missed, so to handle such queries we are going 

to use quarantine queries at run time and then update the query 

model.  

We are going to use the most popular open-source DBMS that 

is MySQL, and PHP language for to develop web application.  

Types of attacks: 

1. Union-Based SQLI :  

This is the most popular SQLI attack which uses UNION 

statement, which is integration of two select statements, to 

obtain data from database. 

Union Query: 

SELECT pass FROM user_table1 WHERE login ID=’’ 

UNION SELECT pass from user_table2 

Where Username=xxx -- AND pass=’’. 

2. Error-based SQLI :  

This is the simplest type of data which involves questioning 

the database, and it responds with an error including the data 

you asked for. 

3. Adding or modifying data: 

This attack involves inserting malicious data or updating the 

data which contains harmful information. 

4. Blind SQLI attack: 

The blind SQLI is the difficult one to detect among the other 

SQLI attacks. In this attack, no error messages are received 

from the database, hence data is extracted by asking questions 

to the database. It is further divided into two types: 

http://www.jetir.org/


© 2020 JETIR April 2020, Volume 7, Issue 4                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2004051 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 347 
 

1.Boolen-based SQL injection: This means asking the 

questions to the database which results in true or false. 

2.Time-based injection: This involves time delay. 

Blind Injection: 

SELECT pass FROM userTable WHERE username= ‘user’ 

and 1 =0 -- AND pass = AND pin=0 

SELECT info FROM userTable WHERE username= ‘user’ 

and = 1 -- AND pass = AND pass=0 

Timing Attacks: 

declare @varchar(8000) select @ = db_Alias() if 

(ascii(substring(@,1, 1))&amp;( power(2,0))) &gt;0 wait for 

delay ‘0:0:6’. 

5. Leakage of sensitive information: 

This means an event that occurs when confidential information 

is being exposed to unauthorized parties as a result of cyber-

attack.  

6. Extracting data from database 

Types of queries to extract information from database which is 

used by an attacker: 

7.Tautology: 

SELECT * FROM userTable WHERE username=’’OR 1=1 --

AND password=’’; 

2=2, 3=3, ‘1’=’1’,’b’=‘b’ or “name”=” ….\ 

8. Stored Procedures: 

CREATE PROCEDURE .is Authenticated 

Name varchar2, varchar2, int AS EXEC(“SELECT accounts 

FROM users WHERE login=” + Name+ If’; and pass=”++ and 

pass= +); 
 

II. METHODOLOGY 

This section consists of brief description about the methods 

that are to be used for implementing the project. 

Our approach is going to detect the SQLIAs using the 

SEPTIC mechanism combined with Naive Bayes machine 

learning algorithm. Machine learning methods provide highly 

accurate predictions on test data. Also, AES Algorithm will be 

sued to encrypt user details to enhance security. 
 

1. AES Algorithm 

This technique will be evaluated on an online shop database, 

for which an online shop application is to be created. The user 

has to login in order to browse through the products and to buy 

the products. So when the user registers user details such as 

name, password, card details will be encrypted using AES 

Algorithm and directly stored in the database. When the 

Admin changes the status of the user from inactive to active 

the details will be decrypted( i.e during login session) and the 

user will be allowed to login and do further process. During 

login process the user generated queries will be matched that is 

semantic matching will be performed, if the query is matched 

with the query in the data set, it will be executed. If the query 

is mismatched then the query will be aborted thus resulting in 

prevention of attack. 

 

2. SEPTIC 

Once the details are encrypted and stored in the database next 

step is to detect the attack or normal process by semantic 

match. SEPTIC runs in 3 modes, first is the training mode that 

is during the setup of the system. Training is carried out by 

running the application without attack for sometime and the 

result is stored in QM(Query Models), each one associated 

with query identifier(ID) and the data will be saved in learned 

query models.  

In normal operation, SEPTIC will generate a QS and an IID 

for arriving request. Attack detection is carried out by 

comparing QS with the QM that was learned for that ID and 

second by looking the disparities between the QS and initial 

query. If the query is found to be valid then it will be stored in 

the learned query model and the learned query model will be 

updated. If the query is invalid then before further execution it 

will be aborted thus resulting in prevention. 

 

2.1 Learning query model 

SEPTIC consists of two learning methods Training 

method and incremental method. 

 

1. Training method: 

In training method queries will be fired to the application and 

stored in the Query Model. All the inputs are not attacks. This 

results the query with in creating and storing the queries with 

unique identifier. This ID is further used and matched the new 

arriving query.  

 

2. Incremental method: 

SEPTIC runs the incremental method in normal operation. 

This allows dealing with the incomplete training (the queries 

not issued) in training model. The basic idea is that when a 

new query is arrived it is being notified to the administrator 

before declaring it to be attack. This method creates need for 

two concepts quarantine to address suspicious query model 

and aging to deal with query model. 

 

3. Naive Bayes 

Detection of SQL Injection attacks using a machine learning 

algorithm called Naïve Bayes. Naïve Bayes is a classification 

machine learning algorithm that assumes that a particular 

incident is unrelated to and is independent of other all other 

incidents . Naïve Bayes classifier is used to classify between 

malicious and non-malicious SQL queries. 

Naïve Bayes builds classifier for classification of malicious 

and non-malicious queries which we are going to implement in 

our project for providing external security to the DBMS by 

detecting malicious queries. This algorithm calculates prior 

and posterior probability. Prior probability is calculated from 

the count of malicious and non-malicious queries. 

 

III. LITERATURE REVIEW 

1. SEPTIC: Detecting Injection Attacks and vulnerabilities 

inside the DBMS, Nuno Neves, Miguel Beatriz, 2019 IEEE 

 

In this paper SEPTIC (Self protecting databases from attacks) 

mechanism is used in 3 different modes such as 

i)Training Mode 

ii) Detection mode  

iii) Prevention mode 

In training mode the application is trained by firing large 

number of queries without performing any malicious code. 

The result of this is stored in query models. For every query a 

ID is generated. For SQLI, attacks are caught by comparing 

queries with query model that is the queries stored in query 

model. If mismatch is found the query is aborted before 

execution. Sometimes, training may be incomplete and cannot 

cover all the queries a new concept of quarantine query is 

added which means putting in queries at run time for which 

SEPTIC has no query model. After this query model is again 

updated by entering new queries in it. A septic_training 

module is developed which targets web applications and works 

like a crawler. For each web page, it searches for HTML forms 

and collects information about the submission methods, action, 

variables and values. Then, it issues HTTP requests for each 

form, causing the queries to be transmitted. This queries can 

be static or dependent on result of other queries. All the 

approaches are triggered by the administrator or otherwise 

executed automatically. Execution time of queries depend on 

the complexity of the application. Once training phase is 

http://www.jetir.org/


© 2020 JETIR April 2020, Volume 7, Issue 4                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2004051 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 348 
 

completed there is no need of intervention of administrator and 

SEPTIC can be put in normal operation. 

SEPTIC is implemented by a module inside the 

DBMS, allowing every query to be checked for attacks. 

Comparing QS with QM corresponds to first two steps of the 

detection process. For detection purpose queries are evaluated 

at the end of the DBMS by semantic matching before the 

query is executed. SQLI attacks are detected if queries fall in 

either class s1(Syntax structure) or s2(Syntax mimicry) as 

shown in table 1. These classes are called primitive for SQLI 

because any SQLI belongs to that. If the query is not matching 

to any of these classes is that if the attack neither modifies the 

query structure nor changes the query mimicking the structure 

than it is unmodified, and it is not SQLI attack. SEPTIC 

performs detection mechanism by comparing validated query 

with the associated query structurally for class 1 and 

syntactically for class 2, plus non unique ID’s are handled by 

comparing Qval with Qinit. An attack is flagged if there are 

differences in any of these tests. SEPTIC has proposed a 

detection algorithm which involves steps such as  

1. Structural verification: In which number of nodes in QS is 

compared with number of nodes in QM and if it is different 

then Qval does not respond to the model and detection of QM 

ends. 

2. Syntactical verification: In this step ELEM_TYPE and 

DATA_TYPE of nodes in QS is checked with QM, and if it is 

different then Qval does not match the model and detection 

stops. 

3. Query similarity verification: in this step Qinit is compared 

with nodes in QS, then this disagreement causes an attack to 

be flagged. 

There is no attack if all checks are valid. Otherwise, there is an 

attack and in such case action to be taken depends upon the 

mode in which SEPTIC is running. In prevention mode query 

processing is aborted, in detection mode query is executed. 

SETIC also includes incremental method which is 

used in last two modes that is in detection and prevention 

mode. It runs the incremental method in normal operation. 

This helps to deal with the problems arised during the training 

phase. So the basic idea behind this method is that when 

SEPTIC processes a query for which there is no QM then 

besides identifying as an attack it also notifies the 

administrator that a new query is observed. As there is no QM 

for the query, before stating the query as attack SEPTIC first 

verifies if the query is an attack using the query similarity 

verification and stored injection detection (insert and update) 

mechanism.  

If the attack is not identified, then SEPTIC stores it in learned 

QMs or quarantine QMs. 
 

 
 

Figure 1:Classes of Attacks against DBMS (“Figure taken 

from [1] ”;) 

 

 

 

 

 

2. SQL Injection Detection using Machine Learning, Anamika 

Joshi, Geeta V, 2014 IEEE. 

 

 In this paper, a combination of Naïve Bayes and Role 

Based Access Control methods have been implemented. The 

different types of SQL Injection attacks have been stated 

which are: 

1) Tautology: In this the SQL query is modified such that the 

conditions always result to true. If id and password are entered 

with a WHERE condition then even if one of the entries 

returns TRUE, all data can be extracted. 

2) UNION: Queries are appended with the use of the UNION 

statement. 

3) Blind SQL: Asking database a TRUE or FALSE question 

and checking whether valid page returned or not by using the 

time it took for valid page to return as the answer to the 

question. 

 Naïve Bayes builds classifier for classification of 

malicious and non-malicious queries which we are going to 

implement in our project for providing external security to the 

DBMS by detecting malicious queries. This algorithm 

calculates prior and posterior probability. Prior probability is 

calculated from the count of malicious and non-malicious 

queries. 

 The tokenizer converts queries into tokens of features 

and labels them as malicious or non-malicious. This input is 

sent to the classifier, which then finally classifies queries as 

malicious or non-malicious query. Firstly Feature Extraction 

method is used to reduce the total number of data in the 

datasets. This can be done by Blank separation Method which 

extracts terms with respect to each blank space. Then 

tokenization will be carried out which breaks the query into 

meaningful elements called tokens. Then Role Based Access 

Control is implemented. In the classifier, the role of the user is 

taken as a parameter for evaluation. If a particular operation is 

not allowed for a given user, then a potential threat to the 

system is detected. 

 In this approach the author proposed a method for 

detection of SQL injection attack based on Naïve Bayes 

Machine Learning Algorithm combined with Role Based 

Access control mechanism detects malicious queries with the 

help of classifier. The addition of another parameter for Role 

Based Access control has increased the accuracy of detection 

and also reduced number of false positives. They thought that 

their method should be tested against larger datasets to 

evaluate the efficiency. The proposed method can be enhanced 

for detection of other types of SQL injection attacks also by 

extracting features appropriately. 

 

3. Detecting Data Leaks via SQL Injection Prevention on an E-

Commerce, Karan Ray, Nitish Pol, Suraj Singh, 2018 IJSER. 

 

 In this paper a secure path for transaction done by the 

user has been established. Using AES (Advanced Encryption 

Standard)encryption technique, the transaction and user 

account details can be made secured. The project consists of 

list of cloths displayed in various materials and designs. The 

user may browse through these products as per categories. If 

the user likes a product, he/she can add it to his/her shopping 

cart. Once user wishes to checkout he must register on the site 

first. Once the user makes a successful transaction admin will 

get report of his bought products. Prevent SQL injection while 

firing queries to database and to make the database secured 

“Detecting Data Leaks via SQL Injection Prevention on an E-

Commerce” is something like the original grocery shop 

shopping cart that is used by the customer in selecting certain 

products. Finally, after selection the customer confirms orders 

for all the purchasing items and submits his/her account details 

with tax information at the checkout counter. 

http://www.jetir.org/


© 2020 JETIR April 2020, Volume 7, Issue 4                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2004051 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 349 
 

 The Online Shop secures the card payment and won’t 

let the card data to get hacked. 

While user doing a card payment, all the card data is encrypted 

and then stored into database. System also keeps user details in 

an encryption form using AES encryption 

 

 

IV. CONCLUSIONS  

 According to technology vendor application security 

the top threat related to databases are SQL injection can be 

prevented by the mechanism of SEPTIC it also gives an idea 

of catching attacks inside the DBMS and identifying the 

vulnerabilities in an application code when attacks were 

detected.  

 In the future, we can use the mechanism to prevent 

business related confidential data so that no one can try to gain 

credentials of others and exploit the victim. The mechanism 

will be experimented both with synthetic code with 

vulnerabilities inserted on purpose and with open source PHP 

web applications, and other type of applications. The 

mechanism will be able to detect and block the attacks it was 

programmed to handle performing better. 

 

REFERENCES 

[1] Nuno Neves, Miguel Beatriz.” SEPTIC: Selecting Injection 

Attack and VulnerabilitiesInside the DBMS. Transaction 2019. 

[2] Karan Ray, Nitish Pol, Suraj Singh Guided by Prof. 

SUVARNA ARANJO, “Detecting DataLeaks via SQL 

Injection Prevention on an E-Commerce”, International 

Journal ofScientific &amp; Engineering Research Volume 9, 

Issue 3, March-2018. 

[3] Anamika Joshi, V “SQL Injection detection using machine 

learning”, 2014 International ConferenceonControl, 

Instrumentation, Communication and Computational 

Technologies(ICCICCT). 

[4] Fehreen Hasan, , “A Novel Approach for SQL Injection 

Prevention Using Hashing &amp; Encryption (SQL-ENCP)”, 

(IJCSIT) International Journal of Computer Science and 

Information Technologies, Vol. 3, 2012. 
[5] Al-Balqa, , “New Strategy for Mitigating of SQL Injection 

Attack”, International Journal of Computer Applications 

Volume 11, November2016.  

[6] M. and D., “Writing Secure Code for Windows 

,1sted,MicrosoftPress Redmond,USA,2007. 

[7] W.G. and , “AMNESIA Analysis and Monitoring for 

neutralizing SQL- Injection Attacks,” . IEEE and Conference 

on Automatic Software Engineering (ASE2005), Long Beach, 

CA, USA, Nov 2005. 

[8] S.W. Boyd and AD., &quot;SQL rand: Preventing SQL 

InjectionAttacks,&quot; . 2nd Applied Cryptography and 

Network Security(ACNS) Conference, Jun 2004. 

http://www.jetir.org/

